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link elevation, stem DBH inequality, trait diversity (i.e., trait 
richness, evenness, dispersion and divergence), functional 
composition [i.e., community-weighted of maximum height 
mean (CWM of Hmax), specific leaf area (CWM of SLA), 
leaf dry matter content (CWM of LDMC), and wood density 
(CWM of WD)] and AGB. The best-fitted SEMs indicated 
that CWM of Hmax promoted AGB while overruling the 
impacts of trait diversity indices on AGB. However, low 
trait diversity indices were linked with higher AGB while 
overruling the effects of CWM of SLA, LDMC and WD on 
AGB. In addition, AGB decreased with increasing elevation, 
whereas stem size inequality did not influence AGB. Our 
results suggest that divergent species’ functional strategies 
could shape AGB along an altitudinal gradient in tropical 
forests. We argue that forest management practices should 
include plant functional traits in the management plan for the 
co-benefits of biodiversity conservation and carbon seques-
tration that underpins human wellbeing.

Keywords  Functional traits · Mass ratio · Niche 
complementarity · Niche overlap · Topography

Abstract  The influences of trait diversity (i.e., the niche 
complementarity effect) and functional composition (i.e., 
the mass ratio effect) on aboveground biomass (AGB) is a 
highly debated topic in forest ecology. Therefore, further 
studies are needed to explore these mechanisms in unstud-
ied forest ecosystems to enhance our understanding, and to 
provide guidelines for specific forest management. Here, 
we hypothesized that functional composition would drive 
AGB better than trait diversity and stem size inequality in 
the (sub-) tropical forests of Nepal. Using data from 101 for-
est plots, we tested 25 structural equation models (SEMs) to 
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Introduction

Functional trait diversity and composition, stand structure 
inequality, topography, soil nutrients and climate condi-
tions shape aboveground biomass (AGB) or productivity 
in forest ecosystems (Paquette et al. 2015; Prado-Junior 
et al. 2016; Wang and Ali 2021b; Yuan et al. 2020). As 
plant traits can affect plant growth, survival, fitness and 
capabilities (Violle et al. 2007), linking traits with ecosys-
tem functions can represent a better picture of underlying 
ecological mechanisms as compared to species’ taxonomic 
identity (Díaz et al. 2007; van der Plas 2019). More impor-
tantly, this approach is crucial to identify key functional 
traits that can substantially enhance AGB, higher atmos-
pheric carbon dioxide absorption and climate change 
mitigation that could underpin human wellbeing (Díaz 
et al. 2007). Nonetheless, much debate remains regarding 
the underlying causes for linking plant trait diversity and 
functional composition with AGB in forests as compared 
to species diversity and structural attributes (Ali 2019; 
van der Plas 2019; Wang and Ali 2021b). Therefore, fur-
ther inquiries are needed to explore these mechanisms 
in unstudied forest ecosystems to further enhance our 
understanding, and to provide guidelines for specific for-
est management.

Two ecological hypotheses (i.e., the niche complemen-
tarity and the mass ratio hypothesis) have been used exten-
sively to interpret the impacts of trait diversity and func-
tional composition on AGB (van der Plas 2019; Wang and 
Ali 2021b). The niche complementarity hypothesis assumes 
that higher resource-use efficiency can boost ecosystem 
functions through the niche differentiation in functionally 
diverse plant communities (Loreau et al. 2001; Poorter et al. 
2017). The mass ratio hypothesis suggests that the traits of 
the most dominant species play a majority role in regulat-
ing AGB that can be measured by the community-weighted 
mean of a trait (Conti et al. 2013; Finegan et al. 2015; Pyles 
et al. 2018). Although both hypotheses are well supported by 
previous studies, the mass ratio mechanism seems to explain 
AGB better than the niche complementarity effect in for-
est ecosystems (van der Plas 2019; Wang and Ali 2021b). 
For instance, acquisitive species may grow fast [i.e., high 
leaf nutrient content and specific leaf area (SLA)] and could 
enhance AGB via higher photosynthetic rates. In contrast, 
conservative species may grow slow [i.e., high wood density 
(WD) and leaf dry matter content (LDMC)] and yet be asso-
ciated with hydraulic efficiency and higher volumetric con-
struction that contribute to higher AGB (Chave et al. 2009; 
Reich 2014). Moreover, positive, negative and/or negligible 
impacts of functional composition on AGB may be attribut-
able to divergent species’ resource-use strategies in forest 
communities (Chiang et al. 2016; Prado-Junior et al. 2016; 
Rosenfield and Muller 2020).

Topographic factors are crucial for shaping plant growth, 
species distribution, diversity pattern and ecosystem func-
tioning (Jucker et al. 2018; Moeslund et al. 2013; Toledo 
et al. 2012). Furthermore, local-scale variation in topo-
graphic factors primarily leads to habitat differentiation 
that may affect the community structure of tropical forests 
(Rodrigues et al. 2020). The status of diversity could be site-
specific and elevation-dependent. For example, taxonomic, 
phylogenetic and trait diversity typically decrease at higher 
altitudes (Xu et al. 2019a, 2019b) as a consequence of severe 
conditions with the effect of environmental filtering (Schöb 
et al. 2012; Stagnol et al. 2016). Thus, it is obvious that 
the lower altitude region is richer in diversity than mid to 
high elevation regions. In addition, it has been recognized 
that compact canopy packing with several vertical strata 
could facilitate light capture and resource-use among co-
occurring individuals that underpin higher AGB through 
the niche complementarity effects (Ali 2019; Jucker et al. 
2015; Yachi and Loreau 2007). Thus, the direct and indirect 
effects of stand structural complexity (i.e., stem size inequal-
ity) on AGB may modulate the impacts of trait diversity 
and functional composition on AGB in forest ecosystems 
(Poorter et al. 2017; Yuan et al. 2020). However, stem size 
inequality, trait diversity and functional composition are not 
only affecting AGB directly, but also, they are mediating 
the responses of AGB to topographic and climatic factors, 
and soil fertility (Chiang et al. 2016; Poorter et al. 2017; 
Wang and Ali 2021a; Yuan et al. 2020). For instance, micro-
climate conditions change along altitudinal gradients due 
to differences in some important above- and below-ground 
resource availabilities (Jucker et al. 2018; Rodrigues et al. 
2020). Thus, elevation can influence species evolutionary 
history and their coexistence which in turn can shape the 
relationships among trait diversity indices, CWM values, 
and stem size inequality with AGB (Chun et al. 2020; Jucker 
et al. 2018).

We have recently reported that higher stand density of 
coexisting species rather than stem size inequality increases 
AGB along an altitudinal gradient (Kunwar et al. 2021b), 
whereas the divergent effects of phylogenetic diversity indi-
ces and species richness determine AGB better than stem 
size inequality across tropical forests in Nepal (Kunwar 
et al. 2021a). Here, we attempt to clarify the effects of stem 
DBH inequality, multi-trait diversity indices (i.e., trait rich-
ness, evenness, dispersion, and divergence), and functional 
composition values [i.e., CWM of leaf and wood traits such 
as CWM of Hmax (i.e., functional dominance), CWM of 
SLA, CWM of LDMC and CWM of WD] on AGB along 
altitudinal gradients in tropical forests. According to the 
specific contribution of this study, we asked the following 
main research questions: (1) Do the joint impacts of trait 
diversity indices and CWM values regulate AGB? (2) What 
is the most important predictor—trait diversity or functional 



335Functional composition of tall‑statured trees underpins aboveground biomass in tropical…

1 3

composition or both—of AGB in tropical forests? (3) How 
do abiotic (i.e., elevation) and biotic (i.e., trait diversity and 
functional composition) factors explain AGB across local 
forest types? We hypothesize that functional composition 
will drive AGB better than trait diversity and stem size 
inequality in (sub-) tropical forests. In addition, as shown 
in the proposed conceptual model (Fig. 1a), we addressed a 
debated research question in tropical forests, i.e., what are 
the direct and indirect effects of stem DBH inequality, trait 
diversity indices and CWM values on AGB along altitudinal 
gradients in tropical forests?

Materials and methods

Study area and forest inventory data assembly

This study was conducted in (sub-) tropical forests (28.7708° 
to 29.2621° N and 80.8975° to 80.6424° E) that covered 
five sites, and the altitude ranged from 218 to 1850 m a.s.l. 
in Sudurpashchim Province of Nepal (see map in Supple-
mentary Fig. S1) (Kunwar et al. 2021a, 2021b). The mean 
annual temperature and precipitation were 16 °C to 23 °C 
and 1280 to 1470 mm, respectively. The forest soil contained 
27.5 to 33 cmol kg−1 of cation exchange capacity, and soil 
pH values ranged in 5.05–5.15. We performed a standard 
forest protocol to measure the total height and diameter at 
breast height (DBH) of all stems having DBH ≥ 10 cm in 

101 (each 0.05 ha in size) circular plots that were estab-
lished randomly on five different sites in 2019. Specifically, 
tropical forests’ sites located at lower elevations were char-
acterized by Shorea robusta as a dominant species, whereas 
sub-tropical coniferous forests’ sites with the dominance of 
Pinus roxburghii were located at higher elevations (Jackson 
et al. 1994).

Quantification of predictors used in the analyses

In this study, trait diversity indices (trait richness, evenness, 
dispersion and divergence), functional composition values 
(CWM of Hmax, WD, SLA and LDMC), elevation, and 
stem DBH inequality were quantified to explain patterns in 
AGB (see Fig. 1; Table S1).

Stem size inequality was computed through the coeffi-
cient of variation (CV) of DBH within each plot (Ali 2019). 
CWM values and trait diversity indices were quantified by 
available measurements of some species’ leaf traits in the 
TRY Plant Trait Database (Kattge et al. 2020). Leaf traits 
of other species were measured during the plant growing 
period following the standard field and laboratory protocols 
in 2020 (Cornelissen et al. 2003). More specifically, three 
to five young and mature individual trees per species were 
selected, and then at least 10 mature healthy leaves were 
collected per individual from different positions (i.e., fully 
and/or mostly sunlit sides) (Ali et al. 2017; Cornelissen et al. 
2003). Leaf samples were stored in closed plastic bags and 

Fig. 1   A conceptual model (a) with hypothesized pathways and their 
explanation (b) for testing the proposed questions and hypothesis in 
the tropical forests of Nepal. Images for forest diversity, structure 
and aboveground biomass are provided for illustration purposes only. 
FRic trait richness; FEve trait evenness; FDis trait dispersion; FDiv 

trait divergence; and CWMHmax, CWMSLA, CWMLDMC, and 
CWMWD stand for the community-weighted plant maximum height 
mean, specific leaf area, leaf dry matter content, and wood density, 
respectively
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kept cool up to further analysis in the laboratory. The SLA 
was obtained through a one-sided fresh leaf area divided by 
its oven-dried mass (dried at 80 °C for 48 h), and LDMC as 
the oven-dried mass of a leaf divided by its water-saturated 
fresh mass. In each plot, Hmax of each species was used to 
determine its maximum height (Prado-Junior et al. 2016). 
The WD values (i.e., species-level) species were acquired 
from the global databases (Kattge et al. 2020; Reyes 1992; 
Zanne et al. 2009). In this study, trait diversity indices and 
CWM values explicitly relied on a total of four traits, i.e., 
SLA, LDMC, Hmax and WD, because these traits are rec-
ognized as the main indicators of AGB and productivity in 
(sub-) tropical forests (Ali et al. 2017; Finegan et al. 2015; 
Poorter and Bongers 2006; Prado-Junior et al. 2016). The 
CWM of a trait value was computed as the average trait 
value in the community (i.e., plot) (Garnier et al. 2004), 
whereas trait diversity indices were determined according 
to multidimensional trait space, i.e., trait richness, evenness, 
divergence and dispersion (Mason et al. 2005; Villéger et al. 
2008). Both trait diversity indices and CWM values were 
weighted by species relative basal area as it best predicts 
AGB (Prado-Junior et al. 2016). Trait values were standard-
ized before calculating the trait diversity indices.

AGB for each tree was estimated through widely used 
best-fit allometric equation for tropical trees species (Chave 
et al. 2014):

where, WD, DBH and H stand for species’ wood density, tree 
diameter at breast height and total tree height, respectively.

Conceptual model development and statistical analyses

Here, we proposed a conceptual model according to the fol-
lowing supposed direct paths: (1) elevation influenced stem 
DBH inequality, trait diversity, and functional composition; 
(2) stem DBH inequality affected trait diversity, and func-
tional composition; (3) elevation, stem DBH inequality, trait 
diversity, and functional composition affected AGB; and (4) 
relationship between trait diversity and functional composi-
tion. Consequently, we also evaluated the indirect impacts 
of (1) elevation on AGB via stem DBH inequality, trait 
diversity, and functional composition; and (2) stem DBH 
inequality on AGB through trait diversity and functional 
composition. The known theoretical relationships were used 
to develop a conceptual model and to test the research ques-
tions by applying the structural equation models (SEMs) 
(Grace et al. 2016; Wang and Ali 2021b). However, we had 
four trait diversity (i.e., trait richness, evenness, divergence 
and dispersion) indices and four functional composition 
values (CWM of SLA, LDMC, Hmax and WD) values, 
and hence we constructed several SEMs according to the 

(1)AGB = 0.0673 ×

(

WD × DBH
2
× H

)0.976

following four approaches. First of all, one comprehensive 
SEM was constructed based on the combination of latent 
variables, i.e., latent trait diversity indices (hereafter refers 
to Latent-FTD; i.e., incorporating trait richness, evenness, 
divergence and dispersion) and latent CWM values (here-
after refers to Latent-CWMt; i.e., incorporating CWM of 
SLA, LDMC, Hmax and WD). By doing so, we found that 
tested SEM was converged, but model-fit statistics were less 
than suggested cut-off values (see Tables S2 and S3). In the 
second step, we constructed four SEMs based on the combi-
nations of Latent-FTD and each of CWM values (i.e., either 
CWM of SLA, LDMC, Hmax and WD) that indicated the 
suitable model-fit (Table S2). Then, four extra SEMs were 
constructed based on the combinations of Latent-CWMt 
and each of FTD index (i.e., either trait richness, evenness, 
divergence or dispersion) that showed poor fit to the data 
(Table S2). The effects of predictors (i.e., direct and indi-
rect) on AGB in these four SEMs showed in Tables S4–S7. 
Finally, we constructed 16 SEMs based on the possible com-
binations of trait diversity indices (i.e., either trait richness, 
evenness, divergence or dispersion) and CWM values (i.e., 
either CWM of SLA, LDMC, Hmax and WD) that all were 
saturated and over-fitted (Table S2).

Bivariate relationships of all predicted paths according 
to SEMs were assessed using regressions analysis and Pear-
son’s correlation coefficients. To simplify and to comple-
ment the complex SEMs outcomes, we performed principal 
component analysis (PCA) including all predictors and AGB 
while highlighting local forest types i.e., sub-tropical conif-
erous forests, tropical evergreen and deciduous forests, and 
tropical evergreen and mixed hardwood forests. PCA was 
carried out to show the correlation circles for predictors and 
AGB across main local forest types, and to clarify the abi-
otic (i.e., elevation) and biotic (i.e., trait diversity, functional 
composition and stem size inequality) gradients to explain 
AGB along two main axes of PCA.

All statistical analyses were conducted in R 3.6.0 (R 
Development Core Team 2019). For comparison of the 
effect size of multiple numerical predictors in a model, all 
those variables were ln-transformed and standardized prior 
to SEM construction (Zuur et al. 2009). The SEM was per-
formed using the lavaan package (Rosseel 2012). We per-
formed PCA using the factoextra and FactoMineR packages 
(Husson et al. 2016).

Results

The tested SEMs based on the four possible combina-
tions of Latent-FTD and four CWM values fit the data 
well, while the relationships of four trait diversity indices 
to Latent-FTD varied from positive (i.e., trait richness), 
nonsignificant (i.e., trait divergence) to negative (i.e., 
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trait evenness and dispersion), and indicated overall low 
FTD (Fig. 2; Tables S8–S11). Specifically, elevation had 
negative direct effects on CWM of SLA, CWM of LDMC, 
CWM of WD and AGB (Fig. 2; Tables S8–S11). CWM of 
Hmax exhibited a positive direct effect on AGB, whereas 
the direct effects of other CWM values were nonsignifi-
cant and weak in effect size (Fig. 2; Tables S8–S11). We 
noted that trait diversity overruled the effects of CWM of 
SLA, CWM of LDMC and CWM of WD on AGB, whereas 
CWM of Hmax overruled the effects of trait diversity on 
AGB (Fig. 2; Tables S8–S11). As such, trait diversity 
interacted positively with CWM of Hmax, but showed 
negative interactions with CWM of SLA (Fig. 2a and b).

The extra 16 tested SEMs based on all possible combi-
nations of CWM values and trait diversity indices showed 
that only CWM of Hmax was the main driver of AGB (Figs. 
S2–S5). Moreover, the negative direct impacts of elevation 
on CWM of SLA, CWM of LDMC, CWM of WD and 
AGB did not change in effect size and were similar to the 
four best-fitted SEMs (Figs. 2; S2–S5). We found various 
interactions between each CWM value and trait diversity 
indices that strongly changed among tested 16 SEMs (Figs. 
S2–S5). The positive direct effect of stem DBH inequality 
on CWM of SLA was similar in effect size to that of the 
main SEMs (Figs. 2b and S3c). Except for divergent (i.e., 
positive and negative) direct effects of trait diversity indices 
on AGB that strongly associated with CWM values included 

Fig. 2   Best-fitted structural equation models for evaluating the direct 
and indirect effects of elevation, stem DBH inequality, latent-FTD, 
functional (trait) composition [either a CWM of Hmax, b CWM of 
SLA, c CWM of LDMC, or d CWM of WD] on aboveground bio-
mass in tropical forests. Significant (P < 0.05) positive and negative 
effects are shown by solid arrows with green and red colors, respec-

tively, whereas black dashed arrows show nonsignificant effects 
(P > 0.05). R2 is the coefficient of determination. Natural-log trans-
formed and standardized data were used in this analysis. See Tables 
S4–S7 for the model summary. Abbreviations are provided in Fig. 1 
and Table S1



338	 S. Kunwar et al.

1 3

in tested SEMs, the other observed relationships in four 
main SEMs were almost similar to16 extra SEMs (Figs. 2; 
S2–S5). In addition, we found that indirect effects of eleva-
tion via mediators (i.e., trait diversity indices, CWM values, 
and stem DBH inequality) were relatively weak in effect size 
in comparison to its direct effects on AGB (Tables S8–S11).

Moreover, the bivariate relationships showed that AGB 
increased significantly with all CWM values, but decreased 
with trait dispersion and elevation (Fig. 3; Table S12). The 
bivariate relationships were mostly similar to the hypothe-
sized paths in tested SEMs. A small difference between each 
assumed path used in the SEMs and bivariate relationships 

may be attributable to the interdependency of multiple tested 
variables that might outperform the significant effects of oth-
ers (Figs. 2 and 3; S2–S5). Pearson’s correlation matrix that 
indicates the correlation coefficient of each pair of tested 
predictors is presented in Fig. S6.

The first axis of the PCA (i.e., PC1) explained 37.3% 
of the variation in studied plots (Fig. 4a). To the PC1 axis, 
elevation contributed positively whereas CWM of WD, 
CWM of SLA and CWM of LDMC contributed negatively, 
indicating that AGB was negatively controlled by elevation 
(Fig. 4b). The second axis of PCA (i.e., PC2) showed gradi-
ents for biotic factors, i.e., species’ functional strategies and 

Fig. 3   Bivariate relationships according to hypothesized paths in 
structural equation models. Only significant relationships (P < 0.05) 
are shown here, whereas a summary of all relationships is provided in 

Table S12. Natural-log transformed and standardized data were used 
in this analysis. Abbreviations are provided in Fig. 1 and Table S1
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trait diversity that explained an additional 17.8% of the vari-
ation in studied plots (Fig. 4a). To the PC2 axis, AGB itself 
contributed positively and was highly positively related to 
CWM of Hmax and trait richness whereas negatively related 
to trait dispersion and evenness (Fig. 4c). We also noted 
that sub-tropical coniferous forest plots were strongly con-
trolled by an abiotic factor (i.e., elevation), whereas tropical 
evergreen and deciduous forests, and tropical evergreen and 
mixed hardwood forests plots were strongly controlled by 
biotic factors (i.e., trait diversity and CWM values), indicat-
ing that the observed SEMs relationships could be highly 
dependent on local forest types (Fig. 4a).

Discussion

Our study examines the joint importance of the niche com-
plementarity and mass ratio effects on AGB along an alti-
tudinal gradient in tropical forests of Nepal. Our findings 
showed the positive effects of CWM of Hmax on AGB along 

higher trait richness gradient, but lower trait evenness and 
dispersion along decreasing altitudinal gradient. Hence, our 
findings support the mass ratio effect whereas the negative 
impacts of high trait diversity or positive impacts of low trait 
diversity on AGB suggest a negligible effect of niche com-
plementarity effect to explain AGB in studied tropical forests 
(Chiang et al. 2016; Finegan et al. 2015; van der Plas 2019; 
Wang and Ali 2021b). However, the PCA suggested that 
these two ecological mechanisms are not mutually exclusive 
but work jointly for shaping community assembly processes 
and functions (Ali et al. 2017; Loreau et al. 2001).

As reported by previous studies around the globe, we also 
found that CWM of Hmax is a potentially powerful driver of 
AGB in forests (Ali et al. 2017; Conti et al. 2013; Finegan 
et al. 2015; Ruiz-Jaen and Potvin 2011). Tall-statured trees 
are usually linked with higher AGB due to higher stem vol-
ume, and their potential capability to capture and use avail-
able resources (Stephenson et al. 2014). The higher ability 
of light use efficiency and root system expansion of taller 
trees could lead to higher photosynthesis rates and more 

Fig. 4   Principal component analysis (PCA) shows a the abiotic 
and biotic gradients for explaining patterns in aboveground biomass 
across three forest types that denoted by different colors ellipses, b 

and c bar plots indicate the loadings of the abiotic and biotic (with the 
contribution values in % over the bars) on PC1 and PC2 in the study 
area. Abbreviations are provided in Fig. 1



340	 S. Kunwar et al.

1 3

soil–water and nutrient exploitation, which in turn could 
enhance plant growth and productivity (Baker et al. 2009; 
Fauset et al. 2015). However, elevation affected AGB nega-
tively but did not significantly affect the CWM of Hmax 
which might be attributable to the selection effect (Jucker 
et al. 2018; Villa et al. 2020). Consequently, we found that 
the functional dominance of tall-statured trees at low-land 
tropical forests was associated with higher AGB in compari-
son with high-altitude sub-tropical forests (Cavanaugh et al. 
2014). Moreover, the nonsignificant effects of CWM of WD, 
LDMC and SLA on AGB indicate that expectations derived 
from the direct contribution of acquisitive and conservative 
species to stand growth and productivity might be overruled 
by the superior role of tall-statured trees with fast resources 
acquisition and turnover rates (Ali et al. 2017; Rüger et al. 
2012). According to the leaf and wood economics spectra 
and even whole-plant economics spectrum, acquisitive and 
conservative species may react differently in a community 
due to ecological trade-offs such as fast versus slow growth 
and longevity versus mortality rates (Chave et al. 2009; 
Reich 2014).

Our results illustrate the negative impacts of functional 
evenness and dispersion, but the positive effect of functional 
richness, and the nonsignificant effect of functional diver-
gence on AGB, indicating that low trait diversity promotes 
AGB in studied forests. However, the relationships between 
trait diversity indices and AGB seem to be related to eleva-
tion-dependent resource availability that affects plant growth 
due to favorable climatic conditions across local forest types 
(Jucker et al. 2018; Wang and Ali 2021a). For example, we 
detected that low-land tropical forests were occupied by 
different functional trait diversity indices as compared to 
high-altitude subtropical forests, indicating that specific spe-
cies’ functional strategy can determine AGB (Wang and Ali 
2021b). Nevertheless, the negative or nonsignificant impacts 
of trait diversity on AGB indicates the strong role of niche 
overlap or functionally-similar species (Chiang et al. 2016; 
Prado-Junior et al. 2016). As such, we observe the negligi-
ble effect of stem DBH inequality on AGB which might be 
attributable to the structural homogeneity of studied forests 
(see Kunwar et al. 2021b, for a more detailed explanation) 
due to the dominance of tall-statured tree species, again 
indicating the niche overlap or asymmetric competition (Ali 
2019; Bourdier et al. 2016). This mechanism might be rea-
sonable because we note that CWM of Hmax overruled the 
effects of trait diversity on AGB, indicating that niche space 
might be covered by tall-statured tree species within a com-
munity (Chiang et al. 2016; Finegan et al. 2015; Wang and 
Ali 2021b). Furthermore, the positive interaction between 
CWM of Hmax and low trait diversity supports the general 
notion that AGB is strongly controlled by mass ratio effect 
compared to the niche complementarity effect in tropical 

forests (Finegan et al. 2015; Prado-Junior et al. 2016; Wang 
and Ali 2021b).

The CWM of Hmax, LDMC, SLA and WD have usu-
ally linked with species’ functional strategies along leaf and 
wood economics spectra which could greatly determine the 
species distribution specimens along an altitudinal gradient 
(Reich 2014; Toledo et al. 2012). As such, we detect that 
elevation negatively affected the CWM of LDMC, SLA and 
WD as compared to Hmax which might be due to the com-
munity assembly processes in relation to competition for the 
resource-use across local forest types (Carroll et al. 2011; 
Reich 2014). PC1 separated forest plots based primarily on 
elevation and trait values (i.e., the CWM of LDMC, SLA 
and WD), whereas PC2 separated plots based on AGB, the 
CWM of Hmax, and measurements of functional trait diver-
sity (i.e., FEve, FRic, and FDis). Along the first axis of PCA, 
we found that elevation was negatively correlated whereas 
acquisitive and conservative species’ functional strategies 
were positively correlated with AGB, indicating the strong 
role of abiotic or environmental filtering (Fortunel et al. 
2014). However, along the second axis of PCA, we found 
that AGB was positively correlated with CWM of Hmax 
and negatively correlated with trait diversity metrics (par-
ticularly functional evenness and dispersion), indicating the 
strong role of biotic filtering (Hillebrand et al. 2008; Wang 
and Ali 2021b). Thus, we argue that studies forests are con-
trolled by both local abiotic and biotic filtering for shaping 
AGB. We argue that our results will facilitate further studies 
to tease apart the confounding impacts of species’ functional 
strategies on AGB within each local forest type by using an 
extended required number of plots for each forest type (but 
see Kunwar et al. 2021a for some evidence based on evolu-
tionary diversity indices).

Conclusions

This study shows that the mass ratio effect determines AGB 
due to the strongest role of tall-statured trees, and hence, 
the niche complementarity effect seems unimportant in the 
studied forests. Therefore, it is important to manage tropical 
forests based on the specific plant strategies that can enhance 
forest functions. However, we argue that local forest types 
according to the species composition and diversity along 
altitudinal gradient should be considered during the plans 
to manage forest ecosystems well.
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